18 Beschreibung und Analyse im zeitdiskreten Zustandsraum

Zoltán Zomotor

Versionsstand: 21. April 2015, 16:18

Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Bitte hier notieren, was beim Bearbeiten unklar geblieben ist:

Inhaltsverzeichnis

1	Die zeitdiskrete Zustandsraumdarstellung	1
2	Ableitung des Zustandsraummodells aus der Differenzengleichung	2
3	$\textbf{Zusammenhang kontinuierliche} \ \leftrightarrow \ \textbf{diskrete Zustandsraumdarstellung}$	3
4	Berechnung der Fundamentalmatrix	Ę
5	Steuerbarkeit und Beobachtbarkeit	6

1 Die zeitdiskrete Zustandsraumdarstellung

Die Zustandsraumdarstellung ist bei zeitdiskreten Systemen in der gleichen Weise anwendbar wie bei kontinuierlichen Systemen. In Analogie zu den zeitkontinuierlichen Systemen kann ein zeitdiskretes System durch ein Zustandsmodell in der Form eines gekoppelten Systems von

Differenzengleichungen 1. Ordnung beschrieben werden:

2 Ableitung des Zustandsraummodells aus der Differenzengleichung

Wir können analog zum kontinuierlichen Fall vorgehen (siehe Skript (10)): Gegeben sei die Differenzengleichung

oder die entsprechende z-Übertragungsfunktion

Wir schreiben die Zustandsgleichungen in der Zeit um -1 verschoben:

Somit gilt für die Zustandsvariablen im Bildbereich

$$\mathcal{Z}\left\{x_i(k-1)\right\} = 0$$

Damit folgt

$$\mathcal{Z}\{x_n(k)\} = \begin{bmatrix} 7 \\ 1 \\ 1 \end{bmatrix}$$

	$\overline{}$	
1	2)	
1	01	

Auflösen nach $X_1(z)$:		
Übertragungsfunktion nach $Y(z)$ auflösen:		
Lücke 5 und 8 eingesetzt ergibt:		
10 ·		
Zurücktransformiert in den Zeitbereich ergibt sich für die Messgleichung		
2 at text and of the triangle of triangle of the triangle of the triangle of triangle		
Die Zustandsgleichung wieder um $+1$ nach links verschieben ergibt dann die Regelungsnormal-		
form wie im kontinuierlichen Fall:		

Die Beobachtungs- und Jordannormalform entsprechen ebenfalls den kontinuierlichen Gegenstücken. die Koeffizienten der z-Übertragungsfunktion lassen sich hier ebenfalls direkt aus den Zustandsmatrizen ablesen.

3 Zusammenhang kontinuierliche \leftrightarrow diskrete Zustandsraumdarstellung

Wir integrieren zunächst ein skalares System 1. Ordnung

$$\dot{x}(t) = ax(t) + bu(t) \text{ mit } x(0) = x_0$$

im Intervall $[0, T]$. Durch Laplace-Transformation erhalten wir die Lösung im Bildbereich:
T sei die Schrittweite des Halteglieds am Eingang, so dass $u(t)$ =const. im Intervall $[0, T]$ gilt.
Die Rücktransformation in den Zeitbereich liefert unmittelbar die Lösung
14 ————————————————————————————————————
Verschieben wir den Startzeitpunkt der Integration von 0 auf $t_k=kT$ ergibt sich
Für den vektoriellen Fall ist es naheliegend, die gleiche Struktur der Lösungsgleichung anzuset-
zen und die skalaren Größen durch Vektoren oder Matrizen zu ersetzen. Dies führt rein formal auf die Beziehung
16 —
Wir haben also mit dem Halteglied am Eingang und idealer Abtastung am Ausgang
17 — — — — — — — — — — — — — — — — — — —
eine zeitdiskrete Ersatzbeschreibung wie in Lücke 1, die das Systemverhalten zu den Abtast-
zeitpunkten t_k exakt beschreibt. Die Systemmatrizen sind also:
18
Dabei ergibt sich allerdings die Schwierigkeit der Definition der Matrix-Exponentialfunktion
$\mathbf{e}^{At},$ die auch als Fundamentalmatrix bezeichnet wird. Sie muss in Analogie zum skalaren Fall

18

4 Berechnung der Fundamentalmatrix

erfüllen. Sie lässt sich wie die skalare e-Funktion als die Bedingung Taylor-Entwicklkung darstellen: 4 Berechnung der Fundamentalmatrix Die Laplace-Transformation der Zustandsdifferentialgleichung $\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u}$ y = Cxmit u(t) = 1(t) ergibt Wenn Sie die Ergebnisse in den Lücken 16 und 21 vergleichen folgt unmittelbar für ${\pmb A}_{
m d}$ und ${\pmb B}_{
m d}$ Für Systeme 2. Ordnung mit einer Systemmatrix $\boldsymbol{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ lässt sich $\boldsymbol{A}_{\mathrm{d}}$ dann mit der Abtastzeit T folgendomste $\boldsymbol{A}_{\mathrm{d}}$ Abtastzeit T folgendermaßen berechnen:

(18)

Beispiel: Gegeben seien die Matrizen

$$A = \begin{bmatrix} 0 & 6 \\ -1 & -5 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Dann ergibt sich für $\boldsymbol{A}_{\mathrm{d}}$ im Bildbereich

5 Steuerbarkeit und Beobachtbarkeit

Für die Steuer- oder Beobachtbarkeit eines diskreten Systems wird wie bei kontinuierlichen Systembeschreibung die entsprechende Steuerbarkeits- oder Beobachtbarkeitsmatrix gebildet, die für vollständige Steuerbarkeit oder Beobachtbarkeit vollen Rang haben muss:

Das zeitdiskrete System $(\underline{A}_{d}, \underline{B}_{d})$, das aus dem kontinuierlichen System $(\underline{A}, \underline{B})$ durch Abtastung mit der Abtastzeit T entsteht, ist genau dann vollständig steuerbar bzw. beobachtbar,

• wenn das kontinuierliche System vollständig steuerbar bzw. beobachtbar ist

erbar bzw. beobachtbar ist

• und wenn für die Abtastzeit nach der bekannten Forderung des Abtasttheorems gilt

mit $\omega_{j,\max}$ als den betraglich größten Imaginärteil aller auftretenden komplexen Eigenwerte.