4 Übungen zu Grundlagen der induktiven Statistik

Zoltán Zomotor

Versionsstand: 13. Mai 2015, 10:11

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Aufgabe 1: Reviewfragen

- (a) Was ist der Unterschied zwische deskriptiver und induktiver Statistik?
- (b) Was versteht man unter einer einfachen Stichprobe?
- (c) Welchen Wert nimmt die Varianz des Stichprobenmittels $\operatorname{Var}(\bar{X})$ für eine einfache Stichprobe X_1,\ldots,X_n mit beliebiger Verteilung und $\operatorname{Var}(X_i)=\sigma^2$ an, wenn $n\to\infty$?
- (d) Was ist die Likelihoodfunktion $f(x_1, ..., x_n | \vartheta)$?
- (e) Wie wird die Likelihoodfunktion $f(x_1, \ldots, x_n | \vartheta)$ bei einer einfachen Stichprobe X_1, \ldots, X_n bestimmt? Was bedeutet hier ϑ ? Geben Sie ein Beispiel für ϑ .
- (f) Unter welcher Voraussetzung für die einfache Stichprobe X_1, \ldots, X_n gilt für ihre Stichprobenvarianz

$$\frac{n-1}{\sigma^2}S^2 \sim \chi^2(n-1)?$$

Welchen Wert haben unter dieser Voraussetzung Erwartungswert und Varianz $\mathrm{E}(T)$ und $\mathrm{Var}(T)$ mit

$$T = \frac{\bar{X} - \mu}{S} \sqrt{n}?$$

(g) Wie hängen Erwartungswert der Stichproben-Standardabweichung $\mathrm{E}(S)$ und die Standardabweichung σ zusammen?

$\overline{(4)}$

Aufgabe 2: Likelihoodfunktion

Sie machen eine Blitzumfrage in Ihrem Umfeld, ob jemand raucht oder nicht. Sie bekommen folgende Antworten: Raucher, Nichtraucher, Raucher, Nichtraucher, Nichtraucher. Fassen Sie die Blitzumfrage als einfache Zufallsstichprobe "mit Zurücklegen" auf. Bestimmen Sie die Likelihoodfunktion $f(R, \bar{R}, R, \bar{R}, \bar{R}|p)$, wobei p der Anteil der Raucher ist.

Aufgabe 3: Likelihoodfunktion

Gegeben sei eine einfache Stichprobe X_1, \ldots, X_n mit

(a)
$$X_i \sim Exp(\lambda)$$
 (b) $X_i \sim P(\mu)$ (c) $X_i \sim B(1, p)$

Geben Sie jeweils die Likelihoodfunktion $f(x_1, ..., x_n | \vartheta)$ in kompakter Form an. Verwenden Sie falls möglich das Produktsymbol \prod und/oder Summensymbol \sum .

Aufgabe 4: Erwartungswert und Varianz von Stichprobenfunktionen

Leiten Sie für die einfache Stichprobe X_1, \ldots, X_n mit $E(X_i) = \mu$ und $Var(X_i) = \sigma^2$ jeweils den Erwartungswert und die Varianz folgender Stichprobenfunktionen her:

(a)
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 (b) $Y = \frac{\bar{X} - \mu}{\sigma} \sqrt{n}$

Aufgabe 5: Fraktile

 X_i (mit $i=1,\ldots,n$) seien unabhängige, jeweils $N(\mu,\sigma)$ -verteilte Zufallsvariable. Geben Sie für jede der folgenden Größen die Zahl $x_{0.95}$ an, die mit 5 % Wahrscheinlichkeit überschritten wird (zum Beispiel für (a): $P(x_{0.95} < A) = 0.05$).

(a)
$$A = \frac{1}{\sigma^2} \sum_{i=1}^{7} (X_i - \bar{X})^2$$

(b)
$$B = \frac{1}{\sigma^2} \sum_{i=1}^{137} (X_i - \bar{X})^2$$

(c)
$$C = \frac{1}{\sigma^2} \sum_{i=1}^{12} (X_i - \mu)^2$$

(d)
$$D = \frac{\sum_{i=1}^{16} X_i - 16\mu}{4S}$$
 (mit S^2 : Stichprobenvarianz von X)

(e)
$$E = \frac{\sum_{i=1}^{1600} X_i - 1600\mu}{40S}$$

(f)
$$F = \sum_{i=1}^{9} \frac{X_i - \mu}{3\sigma}$$

(4)

Lösung 1:

- (a) deskriptive (auch beschreibende oder empirische) Statistik: Vorliegende Daten in geeigneter Weise beschreiben, aufbereiten und zusammenfassen, verdichten quantitativer Daten zu Tabellen, graphischen Darstellungen und Kennzahlen.
 - induktive (auch mathematische oder schließende) Statistik: Aus den Daten einer Stichprobe Eigenschaften der Grundgesamtheit ableiten.
- (b) Alle Stichprobenvariablen X_1, \ldots, X_n sind i.i.d. (=unabhängig und identisch verteilt)
- (c) $Var(\bar{X}) = 0$ für $n \to 0$
- (d) Gemeinsame Dichte / Wahrscheinlichkeitsfunktion von X_1, \ldots, X_n
- (e) $f(x_1, ..., x_n | \vartheta) = f(x_1) \cdot f(x_2) \cdot ... f(x_n)$. ϑ ist der, oder die, Parameter einer Dichte- oder Wahrscheinlichkeitsfunktion, zum Beispiel μ und σ der $N(\mu, \sigma)$ -Verteilung.

(f)
$$X_i \sim N(\mu, \sigma), E(T) = 0, Var(T) = \frac{n-1}{n-3}$$

(g)
$$E(S) \leq \sigma$$

Lösung 2:

$$f(R, \bar{R}, R, \bar{R}, \bar{R}|p) = f(R) \cdot f(\bar{R}) \cdot f(R) \cdot f(\bar{R}) \cdot f(\bar{R}) = p^2 (1-p)^3$$

Lösung 3:

(a)
$$f(x_1, ..., x_n | \lambda) = \lambda^n e^{-\lambda \sum_{i=1}^n x_i} = \lambda^n e^{-\lambda n \bar{x}}$$

(b)
$$f(x_1, \dots, x_n | \mu) = \frac{\mu^{\sum_{i=1}^n x_i} e^{-n\mu}}{\prod_{i=1}^n x_i!} = \frac{\mu^{n\bar{x}} e^{-n\mu}}{\prod_{i=1}^n x_i!}$$

(c)
$$f(x_1, \dots, x_n | p) = p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i} = p^{n\bar{x}} (1-p)^{n(1-\bar{x})}$$

Lösung 4:

(a)

$$E(\bar{X}) = E(\frac{1}{n} \sum_{i=1}^{n} X_i) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \sum_{i=1}^{n} \mu = \frac{1}{n} \mu \sum_{i=1}^{n} 1 = \mu$$
$$Var(\bar{X}) = Var(\frac{1}{n} \sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \frac{1}{n^2} Var(X_i) = \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \frac{n}{n^2} \sigma^2 = \frac{1}{n} \sigma^2$$

(b)

$$E(Y) = E(\frac{\bar{X} - \mu}{\sigma} \sqrt{n}) = \frac{E(\bar{X}) - \mu}{\sigma} \sqrt{n} = \frac{\mu - \mu}{\sigma} \sqrt{n} = 0$$
$$Var(Y) = Var(\frac{\bar{X} - \mu}{\sigma} \sqrt{n}) = \frac{n}{\sigma^2} Var(\bar{X}) = \frac{n}{\sigma^2} \frac{\sigma^2}{n} = 1$$

(4)

Lösung 5:

(a)
$$A \sim \chi^2(n-1) = \chi^2(6)$$

$$P(A < x_{0.95}) = F(x_{0.95}) = 0.95$$
 Tabelle 1 im Skript: $x_{0.95} = 12.59$

(b)
$$B \sim \chi^2(n-1), n > 30 \Rightarrow$$
 Näherung mit $\tilde{x}_{0.95}$ aus $N(0,1)$ -Verteilung:

$$\tilde{x}_{0.95} = 1.64 + 0.01 \frac{0.95 - 0.9495}{0.9505 - 0.9495}$$
$$= 1.645$$
$$x_{0.95} = \frac{1}{2} (\tilde{x}_{0.95} + \sqrt{2 \cdot 136 - 1})^2$$
$$= 164$$

(c)
$$C \sim \chi^2(n) = \chi^2(12), \ x_{0.95} = 21.03$$

(d)
$$D \sim t(n-1) = t(15), x_{0.95} = 1.753$$

(e)
$$E \sim t(1599) \approx N(0,1), x_{0.95} = 1.645,$$

(f)
$$F \sim N(0,1), x_{0.95} = 1.645$$